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Abstract. We apply a non-perturbative procedure for the calculation of the total photoionization
cross-section of two-electron atomic systems. The procedure is based on the Floquet-Fourier represen-
tation of the time-dependent Schrödinger equation. With the use of the Hylleraas-type basis functions,
the total photoionization cross-sections obtained are within the accuracy of a fraction of a percent, which,
we believe, is the most accurate estimate for the cross-sections available. The total photoionization cross-
sections for neutral helium deviate notably from the benchmark experimental data [J.A.R. Samson et al.,
J. Phys. B 27, 887 (1994)].

PACS. 32.80.Fb Photoionization of atoms and ions – 32.80.-t Photon interactions with atoms – 32.80.Rm
Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states)

1 Introduction

Photoionization of two-electron atoms has been studied
theoretically by different authors starting from the pio-
neering paper [2]. Review of early literature on this sub-
ject can be found in [3]. Subsequently, a large number of
computations of helium photoionization cross-sections was
reported [4–7]. These calculations produced a collection of
results varying typically by 5% from each other. On the
experimental side, the benchmark set of data was reported
by Samson and co-workers [1,8]. Agreement between the
theoretical and experimental data was within the same
margin of 5%. In the following years, the theoretical inter-
est shifted towards calculation of differential characteris-
tics of the photoionization process and to studies of dou-
ble photoionization. Here, several approaches have been
advocated including the many-body perturbation the-
ory [7,9], convergent close-coupling method [10,11], many
electron many photon approach [12,13], time-dependent
close-coupling method [14–16], R-matrix approach [17,18],
and methods based on the computation of the dipole re-
sponse function [19] or B-spline implementations of the
exterior complex scaling [20,21].

Due to this shift of focus, there have been no further
attempts to produce a consistent set of photoionization
cross-sections of He with an accuracy of better than sev-
eral percent. In the meantime, accurate helium photoion-
ization cross-sections would be highly desirable due to im-
portance of He in astrophysics and its use as a standard
gas in determination of the photoionization cross-sections
of other atomic and molecular species.
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In the present paper we report a calculation of the to-
tal photo-ionization cross-section from the ground state
of helium, which we believe provides results accurate to
within a fraction of a percent. We were able to attain this
level of accuracy by reformulating the description of the
photoionization process in terms akin to those used in the
bound-state calculations, and by borrowing one impor-
tant tool used in the bound-state calculations, namely the
Hylleraas basis set. It is use of this tool which allows un-
precedented accuracy of the bound-state calculations in
few-electron systems. Use of this tool allows also, as we
hope to demonstrate, achieve quite high accuracy in the
photoionization calculations, even in the regime of rela-
tively high intensities of the applied electromagnetic field.

To achieve this goal we combine the so-called com-
plex rotation method (CRM) and the Hylleraas basis tech-
nique.

There is a long history of using the CRM method in
the photoionization calculations. One way of calculating
the photoionization cross-section is to combine the CRM
technique with the perturbation theory with respect to
interaction of the atom with the electromagnetic field. In
such a perturbation theory, the CRM provides the basis of
the field-free atomic states. It was demonstrated [22] that
relying on the spectrum of the CRM eigenvalues, one can
construct a representation of the complete Green’s func-
tion of the atom. This, in turn, allows to write down a
convenient representation for the projection operator cor-
responding to the continuous spectrum of the atom [23].
Using this projection operator, one can compute proba-
bilities of transitions into continuum under the action of
some perturbation, in particular, the interaction of the
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atom with the electromagnetic field. Calculations of total
photoionization cross-sections of the helium atom, based
on this technique, have been reported in [24,25].

Alternative, completely nonperturbative approach to
the description of EM-radiation-atom interaction, has
been proposed in reference [26] which also relies on the
ideas of the CRM technique. This approach becomes fea-
sible in the so-called Floquet-Fourier representation of
the time-dependent Schrödinger equation [27]. This rep-
resentation allows to reduce the problem of solving the
time-dependent Schrödinger equation to a somewhat sim-
pler task of finding solution of a set of differential equa-
tions. The CRM is a convenient tool which allows to solve
this problem efficiently. Thus, starting from the pioneering
work [26], the combination of these methods has been used
in a number of works devoted to the study of atom-EM
radiation interaction [28–30].

The key ingredient of the present work, which distin-
guishes it from previous implementations of the Floquet-
CRM method, is the use of the Hylleraas basis functions.
This basis has long been used in variational-type calcula-
tions of bound states. An excellent review of applications
of the Hylleraas basis to calculations of energies of two-
electron atoms is given in reference [31]. A well-known
trademark of the Hylleraas basis set is a very high accu-
racy, which use of this basis allows to reach.

In the present paper, we show that the same high accu-
racy which is achieved for field-free atomic states can also
be attained when the atom is placed in a monochromatic
electromagnetic field. In particular, the total photoion-
ization cross-sections can be calculated with an unprece-
dented accuracy of the order of a fraction of a percent.

Thus generated cross-sections were compared with the
experimental results [1]. Within the present accuracy, we
discovered a systematic deviation from the experiment,
especially in the region close to double ionization thresh-
old at the photon energies of ∼80 eV. This deviation was
confirmed by comparison with earlier results produced by
the convergent close-coupling (CCC) method [32].

The true potential of the present approach is realized
in the strong field regime where the perturbation the-
ory fails. As demonstrated below, the Floquet-Fourier-
Hylleraas ansatz produces very accurate results in this
regime as well.

2 Theory

2.1 General theory

The non-relativistic Hamiltonian of the helium atom in
the presence of the external monochromatic linearly-
polarized electromagnetic field can be written as:

Ĥ =
p2

1

2
+

p2
2

2
− 2

r1
− 2

r2
+

1
|r1 − r2| + F ·D cosωt, (1)

where we adopt the length gauge to describe interaction
of atom and the field, and D = r1 + r2. Unless stated
otherwise, the atomic units are used throughout the paper.

We shall also assume that the field is directed along the
z-axis.

We write the solution of the time-dependent
Schrödinger equation (TDSE) using the Floquet-Fourier
ansatz [26,27,33,34].

Ψ(t) = e−iEt
∑

n

une−inwt. (2)

By substituting this expression into the TDSE and equat-
ing coefficients with e−iEt−imwt, we obtain a chain of cou-
pled equations for the Floquet-Fourier coefficients un:

(E − T̂ − Û + nω)un =
F ·D

2
(un−1 + un+1),

n = 0,±1 . . . , (3)

where E, T̂ and Û stand, respectively, for the quasienergy,
and operators of kinetic and potential energy.

This set of equations can be solved with the help of
the CRM procedure [35–40]. Formally, the CRM can be
described as a complex transformation of radial variables
ri → rie

iθ, where θ is the rotation angle, the sole param-
eter defining the transformation.

Under this transformation, the chain of equations (3)
is converted into

(E − T̂ e−2iθ − Ûe−iθ + nω)un =
F · D

2
eiθ(un−1 + un+1),

(4)
where n = 0,±1 . . .

According to the general theory of CRM [35–38], the
set of equation (4) can be solved by means of variational
techniques if the rotation angle θ is properly chosen.

As usual in the variational calculations, we introduce
a basis set of square integrable functions |n, k〉 where the
index n refers to the number of the Floquet block and the
index k denotes a particular L2 function in the subspace
of the nth block so that un =

∑
k

cnk|n, k〉. With these

notations, the set of equations (4) can be rewritten in a
matrix form as:

(
(E + nω)Rnk

n1k1
− T nk

n1k1
e−2iθ − Unk

n1k1
e−iθ

)
cnk =

∑

n2=n±1

V n2k
n1k1

eiθ

2
cn2k, (5)

where it is understood that summation is carried over the
repeated k-index. Here V̂ = F ·D, and R, T and U stand
for the overlap, kinetic energy and potential energy ma-
trices, respectively.

One should say here a few words about the choice of
the basis allowed by the structure of the system (5). Sup-
pose first, that in each of the subspaces, corresponding
to different Floquet blocks, we chose some compete set of
functions, such that for any un in equation (4) we had:
un =

∑
cnm|n, m〉. Let the set of |n, m〉’s be the same

for all Floquet subspaces. Then, if we have retained N
Floquet blocks in the system (4) and keep M terms in
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the expansion for each un in equation (4) we have alto-
gether NM unknowns cnm in the system (4). To get a cor-
rectly posed eigenvalue problem, we should have the same
number of equations. This number is provided by project-
ing each of the equations (4) on one of the |n, m〉’s with
m = 1 . . .M . This way of reducing the set of equations (4)
to the form of matrix eigenvalue problem is correct, but
too general for our purposes. It can be seen, that one can
reduce considerably the resulting dimension of the matrix
eigenvalue problem by using certain symmetry properties
of the system equation (4). It is easy to see that this sys-
tem allows the following class of solutions: un’s with even
n are of even parity, while un’s with odd n are of odd
parity. Parity here is understood with respect to the spa-
tial inversion. Of course, there is a class of solutions with
the opposite property: un’s with even n are of odd parity,
while un’s with odd n are of even parity. The solution we
are looking for (which is to describe behavior of the even
1Se state of helium) evidently belongs to the first class.
We can therefore, choose the basis set as follows.

Instead of choosing the same set |n, m〉 for each
Floquet block, we choose two sets: a set |neven, m〉,
consisting of basis functions of even parity, is used as
a basis to represent un’s with even n’s. Another set
|nodd, m〉, composed of odd parity functions is used as
a basis to represent un’s with odd n’s. Suppose that in
the expansions of un’s with even n’s we retain Meven

terms, and in the expansions of un’s with odd n’s–Modd

terms. Let the number of Floquet blocks with even and
odd n’s be respectively Neven and Nodd. Than we have
NevenMeven+NoddModd unknown coefficients cnm. We ob-
tain the same number of equations by projecting equa-
tion (4) on |neven, m〉, m = 1 . . .Meven for even n and on
|nodd, m〉, m = 1 . . .Modd for odd n. Projection of equa-
tions with even n on the |nodd, m〉 and of equations with
odd n on the |neven, m〉 gives identically zero and does not
add new equations. More details about the basis functions
|neven, m〉 and |nodd, m〉 is given below.

According to the general theory of CRM, some of the
energy values (generally complex) for which system (5)
has a solution are related to the position and width of
the resonance state via E = Er − iΓ/2, where Er is po-
sition of the resonance and Γ its width. This leads one
to solving a generalized eigenvalue problem. Efficiency of
finding eigenvalues of such a problem depends crucially on
the choice of the basis used to represent the matrices in
equation (5). So far, the development has been fairly gen-
eral and well-known, following, e.g., the ideas presented
in [26]. We introduce now a major technical improvement,
consisting in the choice of the basis functions.

2.2 Basis set

The basis set used in the present paper was constructed
from the Hylleraas type functions:

gn1,n2,N (r1, r2) = rn1
1 rn2

2 |r1−r2|Ne−ar1−br2 |l1(1)l2(2)L〉,
(6)

where a, b are some constants (to be specified below), n1,
n2, N are integers and the angular part

|l1(1)l2(2)L〉 =
∑

m1m2

CLM
l1m1l2m2

Yl1m1(n1)Yl2m2(n2), (7)

represents two angular momenta l1, l2 coupled to a
state with a total angular momentum L. The basis func-
tions (6) must be properly symmetrized with respect to
exchange of the electron coordinates. When choosing pa-
rameters in equation (6), we followed the following rule of
thumb [31,41]. All the basis functions with the parameters
satisfying:

n1 + n2 + N < Nmax (8)

were included in the calculation (this inequality defines the
so-called Pekeris shell). The parameter Nmax determines
the overall size of the basis. There is also a semiempirical
rule for choosing angular momenta l1, l2 in equation (6).
Thus, for states of the natural parity, l1, l2 are best chosen
so that l1 + l2 = L. Both these criteria help to avoid the
numerical problems due to near-degeneracy of the basis
set when its dimension becomes large.

3 Numerical results

3.1 Field-free case

In the present work, our main goal is to obtain accurate
photoionization cross-sections from the ground state of
neutral helium for not very large electromagnetic field in-
tensities. Accordingly, our main interest is focused on the
states of S and P symmetries. Therefore, our first goal
is to choose such a basis that solution of the eigenvalue
problem (5) yields accurate energies for the ground 1S and
first excited 1P0 state of the helium atom in the absence
of the field.

This goal was achieved as follows. We chose parame-
ters Nmax = 18, a = b = 2 for the S-states and Nmax = 12,
a, b = 1, 2 for the P-states. The reason for enlarging the
basis set for the excited P-states is that the electrons in
such states are generally on different distances from the
nucleus. This choice combined with restriction on angular
momenta, given by equation (8) resulted in NS = 372 ba-
sis functions for the S-states and NP = 660 basis functions
for the P-states.

The next step was to solve the generalized eigenvalue
problem for the field-free case. In equation (5) we put
F = 0, ω = 0, and limited ourselves to the blocks with
n = 0, n = ±1, the n = 0 block being composed of the
states of 1Se symmetry, and n = ±1 blocks composed of
the states of 1P0 symmetry. All the numerical results re-
ported below were obtained using the quadruple precision
arithmetic.

We note, that in the presence of the weak electromag-
netic field, account of the blocks with n = ±1 corresponds
to absorption and emission of one photon. We shall use
this fact below to extract the photoionization cross-section
from our calculation. For the moment, we are concerned
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with testing the accuracy of our basis. Diagonalization of
the eigenvalue problem (5) with F = 0, ω = 0 in the
basis described above produced the following results for
the complex energies: E = −2.903724384 + i 1.3 × 10−8

(the ground state) and E = −2.123843094 + i 7.6 × 10−9

(1s2p 1P0 state). A small imaginary part which, in the ab-
sence of the field, should of course be zero could be taken
as an indication of an accuracy of our basis set. Either
this criteria or a direct comparison with the well-known
results of highly accurate calculations [31] shows that we
have achieved an accuracy of the order of 10−8 a.u. This
accuracy, as will be demonstrated below, is sufficient to ob-
tain the photoionization cross-sections with at least three
significant figures.

3.2 Total photoionization cross-sections

To calculate the total photoionization cross-sections we
adopted the following strategy. The eigenvalue prob-
lem (5) was solved with the Floquet blocks n = 0,±1
retained, the composition of each block was the same as
described above for the field-free case. Diagonalization of
the eigenvalue problem (5) produced energy shift and total
width for the ground state. By definition, the photoion-
ization cross-section from this state is related to the total
width Γ via

σ = lim
F→0

8παΓω/F 2, (9)

where F is field strength, ω its frequency, α is the fine
structure constant. We need therefore to extract from our
calculation the coefficient with F 2 in the asymptotic law
defining the weak-field behavior of the width:

Γ (F ) = Γ0F
2 + Γ1F

3 + . . . (10)

To implement this strategy, we need an extrapolation pro-
cedure since the calculation based on the system (5) is
performed for a non-zero field strength. Although finite,
this field strength should not be too small to compute Γ
with sufficient accuracy.

The issue of accuracy can be addressed as usual in
variational-type calculations, by merely increasing the ba-
sis size and verifying that the results do not change ap-
preciably. Such a test was performed for a photon energy
ω = 80 eV and a field strength F = 0.1 a.u. by vary-
ing the parameter Nmax in equation (8) for the S and
P states. The diagonalization of the problem (5) was per-
formed with the Floquet blocks n = 0,±1 retained. All
the remaining details of the basis (nonlinear parameters,
etc.) were the same as in the field-free case reported above.
The calculation was performed for the value of the rota-
tion angle θ = 0.3.

The test results are presented in Table 1. One can ob-
serve that, just as in the field-free case, the accuracy is on
the level of 10−8 a.u., which implies that Γ has at least
four significant digits in this interval of field strengths.

Another check of the accuracy can be obtained by
studying dependence of the resonance parameters upon
the rotation angle θ. We repeated the calculation de-
scribed above (with NS

max = 18, NP
max = 12) for various

Table 1. Results for the ground state eigenvalue of problem (5)
as functions of parameters Nmax in equation (8), ω = 80 eV,
F = 0.1 a.u.

NS
max NP

max Total dimension ReE (a.u.) Γ (a.u.)

of the eigenvalue

problem (5)

17 11 1300 −2.90307660 0.000487738

18 12 1692 −2.90307661 0.000487698

19 13 2204 −2.90307659 0.000487689

Table 2. Dependence of the ground state eigenvalue of prob-
lem (5) (NS

max = 18, NP
max = 12) as function of the rotation

angle θ, F = 0.1 a.u.

θ ReE(a.u.) Γ (a.u.) ReE(a.u.) Γ (a.u.)

w = 80 eV w = 111 eV

0.20 −2.90307627 0.000488071 −2.90338566 0.000146997

0.25 −2.90307654 0.000487729 −2.90338579 0.000147052

0.30 −2.90307661 0.000487698 −2.90338581 0.000147074

0.35 −2.90307660 0.000487683 −2.90338582 0.000147085

0.40 −2.90307660 0.000487689 −2.90338582 0.000147094

values of θ in the interval θ ∈ [0.20, 0.40]. Results are pre-
sented in Table 2 for the photon frequencies of 80 eV and
111 eV and for the field strength of 0.1 a.u.

As one can see, in the vicinity of θ = 0.30 variation of
the results is within the bounds of accuracy established
above, confirming thus this accuracy estimate and the
choice of the rotation angle (θ = 0.30) for which all the
subsequent calculations have been performed.

The issue of the stability of the results with respect
to the number of the Floquet blocks included in diago-
nalization of (5) is addressed in the next section where
we consider effects of going beyond the first order per-
turbation theory. We shall say in advance that, for the
field strengths considered, inclusion of the Floquet blocks
with n = ±2 in diagonalization of (5) does not alter the
numerical accuracy appreciably.

As to the extrapolation procedure needed to extract
the coefficient Γ0 in equation (10), we chose a scheme
based on the three-point Lagrange formula. For each fre-
quency reported below, we performed calculations for the
field strengths F = 0.07, 0.1, 0.13 a.u. We also used a mid
size basis set with NS

max = 18, NP
max = 12, Floquet blocks

with n = 0,±1, all other details of the basis being the
same as in the field-free case above. Results of this calcu-
lation and extrapolation procedure are shown in Table 3.

Using an estimate for the remainder of the series (10),
it is a simple matter to verify that for the field strengths
considered the possible relative error introduced by the
extrapolation of Γ/F 2 is on the order of 0.1%. Hence, at
least three digits in our result for the extrapolated ra-
tio Γ/F 2 and the cross-sections reported below must be
reliable. This level of accuracy can easily be improved by
merely going to extrapolation schemes of higher order and
computing Γ for more field values.
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Table 3. Extrapolation of the Γ ’s to the zero-field limit.

Γ/F 2 (a.u.)

ω F = 0.07 a.u. F = 0.1 a.u. F = 0.13 a.u. F = 0

(eV) (Extrapolation)

40 0.4208622 0.4201601 0.4192063 0.4215215

80 0.0488002 0.0487698 0.0487239 0.0488112

85 0.0392854 0.0392618 0.0392330 0.0393202

91 0.0306858 0.0306720 0.0306524 0.0306961

95 0.0262180 0.0262082 0.0261936 0.0262224

111 0.0147116 0.0147084 0.0147033 0.0147116

205 0.0013719 0.0013726 0.0013729 0.0013687

Table 4. Comparison of the present results and other the-
oretical and experimental data for the total photoionization
cross-section (in Mb).

ω Present CCC Experiment Compilation

eV L V [1] [42] [43]

40 3.1822 3.188 3.178 3.16 3.183 3.190

80 0.7369 0.7432 0.7403 0.693 0.715 0.702

85 0.6308 0.6364 0.6327 0.595 0.611

91 0.5272 0.5333 0.5284 0.502 0.509

95 0.4701 0.4765 0.4717 0.450 0.452

111 0.3082 0.3097 0.3089 0.300

205 0.0529 0.0533 0.0534 0.0510 0.0533

In Table 4 we present our results for the cross-sections
based on formula (9) in which we fed the extrapolated
ratios from the last column of Table 3. Along with our
data, we present the experimental results of Samson and
co-workers [1,8,42] as well as earlier theoretical results
from [32] and compilation [43]. Graphical illustration of
the present results, theoretical results obtained by means
of the CCC method, and the experimental data [1] is given
in Figure 1.

For the photon energy of 40 eV, we also compare
our results with a highly accurate multichannel calcula-
tion of [44]. Using a combination of configuration inter-
action and close-coupling techniques, these authors ob-
tained the following values for the total single ionization
cross-section: 3.18173 Mb (length gauge), 3.18129 Mb (ve-
locity gauge) and 3.18056 Mb (acceleration gauge). Vari-
ation of these results with the gauge is on the order of
5 × 10−4 Mb which can be used as a measure of the ac-
curacy of their calculation. These results are to be com-
pared with our cross-section of 3.1822 Mb which is within
the limits of 5 × 10−4 Mb from the length gauge of [44].
We may therefore conclude that we achieved at least the
same level of accuracy in the description of the single-
electron ionization as was reported in the work [44]. Our
calculation, however, covers the region of larger frequen-
cies, where the double electron photoionization channel is
open.

The deviation of the present data and the experimen-
tal data [1] reaches 6 percent for ω = 80 eV. This fact de-
serves some attention, we believe, since helium often serves
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Fig. 1. Total photo-ionization cross-section from the ground
state of helium. Present Floquet-CRM results are indicated
by dots. The CCC calculation in the length, velocity and ac-
celeration gauges are shown by solid (red), dashed (green)
and dotted (blue) lines, respectively. Experimental data of
Samson et al. [1] are displayed by a thick solid line. A
color version of the figures is available in electronic form at
http://www.eurphysj.org.

as a “standard” in photoionization cross-section measure-
ments, and, therefore, precise knowledge of parameters
characterizing photoionization in helium is of consider-
able practical importance. Agreement between the present
calculation and that of the CCC is much better, differ-
ence of the results of two approaches not exceeding 1%.
The accuracy of the CCC result is hard to estimate di-
rectly as this method relies on the numerical solution of
a set of close-coupling equations. The only implicit indi-
cation is the difference between the cross-sections calcu-
lated using length (L) and velocity (V) gauges to describe
atom-EM radiation interaction. This difference is typically
1–2%. Thus, the deviation of the present calculation with
the CCC is more likely to be the problem of the latter
as the former is believed to be much more accurate. As
data from Table 4 show, the present results which rely on
the length-form representation of the atom-EM interac-
tion agree somewhat better with the velocity-form CCC
results than with the length-form CCC data. We would
be hesitant to ascribe any physical significance to this
fact. Different gauges put different emphasis on the wave-
function to describe accurately photoionization process.
In particular, the length gauge puts more emphasis on the
atomic wave-functions at large distances which contribute
little to the total energy of the bound state and therefore
are poorly represented in variational calculations. There-
fore the length gauge CCC results may be slightly less
accurate than the velocity gauge results.

In the paper [21] the authors compared their total pho-
toionization cross-section with the experimental data [1].
They concluded that the agreement between theory and
experiment was excellent in the whole energy range, ex-
cept in the vicinity of the resonance peaks due to the
limited energy resolution of the experiment. This agree-
ment was also categorized as very good in the region where
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the double ionization continuum was open. As the results
of reference [21] were presented graphically, it is hard to
make a quantitative comparison between theory and ex-
periment. Visual magnification of their cross-section plot
(Fig. 6) reveals that the calculated cross-section is some-
what larger than the measured one close to double ioniza-
tion threshold. For larger photon energies, our results are
in good agreement with the results obtained by [43] who
used large-energy asymptotic expansions for the cross-
sections.

3.3 Extended calculation

We now turn to extended calculations with inclusion of
a larger number of the Floquet blocks n = 0,±1,±2 in
equation (5). The aim of this calculation is two-fold. First,
we shall confirm the stated accuracy of the present weak
field results, showing that it is not effected by the number
of the Floquet blocks retained in the calculation. Second,
we report some preliminary results concerning behavior
of the widths parameter in stronger fields where inclusion
of a larger number of the Floquet blocks becomes essen-
tial due to the non-perturbative nature of the processes
involved.

The basis for the extended calculations was
constructed as follows. As we discussed above, the
basis subset, spanning each Floquet block in system (5),
can be chosen to consist of the functions of a given parity,
two adjacent blocks having opposite parities. Thus, in the
low-field calculations described above, the block n = 0
was composed of even basis functions while two blocks
with n = ±1 contained odd basis functions. Inclusion of
the blocks with n = ±2 is, therefore, equivalent to adding
more even basis functions. We did it in the following
way. In addition to the 1 Se states we previously had
in the n = 0 block, the states of the 1 De symmetry
were included in the calculation. We need not consider
states of the 1Pe symmetry. Indeed, in our problem,
the z-projection of the total angular momentum M
is a conserved quantity. In the present paper we are
interested only in the manifold of states with M = 0.
For M = 0 all matrix elements 〈PeM |Dz|P0M〉 vanish.
The blocks with n = 0 and n = ±2 had the following
composition: Nmax = 18 for the 1Se-basis functions,
Nmax = 8 for the 1De-basis functions. As before, the
blocks with n = ±1 were composed of basis functions
of 1P0-symmetry with Nmax = 12. Thus, the basis set
is considerably enlarged comparing to the one used in
the previous section. With this choice of parameters
Nmax, the overall dimension of the eigenvalue problem (5)
was 2607. Results produced for the ground state of He
by diagonalizing this eigenvalue problem are shown in
Table 5. Comparison of the results given in Table 5
supports the assertion we made in the previous section as
to the accuracy of our results for the widths. As one can
see, for the field strengths F ≈ 0.1 a.u., inclusion of the
additional Floquet blocks and basis states of symmetries
other than S and P produces relative variations in the
widths of the order of 0.01 percent. This means that for

Table 5. Results of the calculation with Floquet blocks
n = 0,±1,±2 included in the system (5).

ω = 111 eV ω = 205 eV

F (a.u.) ReE (a.u.) Γ/F 2 (a.u.) ReE (a.u.) Γ/F 2 (a.u.)

0.10 −2.90338569 0.014714 −2.90362976 0.0013734

0.13 −2.90315198 0.014715 −2.90356447 0.0013739

0.20 −2.90236955 0.014715 −2.90334589 0.0013743

0.50 −2.89525524 0.014706 −2.90135842 0.0013745

1.0 −2.86985102 0.014665 −2.89426254 0.0013701

such field values we are still within the domain of the
validity of the perturbation expansion. For the frequencies
presented in the table, the domain of the perturbation
theory actually extends quite far in the region of large
field strengths. As one can see from Table 5, the ratio
Γ/F 2 starts changing in an appreciable manner only for
field strengths as large as F ≈ 1 a.u., which is where a
truly non-perturbative regime starts. We cannot claim, of
course, that the estimates of accuracy we made above are
valid for the field strengths as large as F ≈ 1 a.u. These
estimates were restricted to a region of the field strengths
F ≈ 0.1 a.u. The entries for the field strength F = 1 a.u.
in Table 5 are intended rather as a demonstration of
the fact that the ratio Γ/F 2 starts changing appreciably
only for field strengths as large as F ≈ 1 a.u. A proper
accuracy estimate pertaining for this region of the much
larger fields would require repeating all the steps we made
above for smaller fields region (stability with respect to
variation of the basis composition, rotation angle, number
of the Floquet blocks, etc.). As we mentioned above
the results presented in this section bear a preliminary
character. We shall not, therefore, perform a thorough
study to obtain an accuracy estimate pertaining for the
region of the strong fields F ≈ 1 a.u. An indication of
the possible accuracy our data for F ≈ 1 a.u. may have,
can be obtained by changing the composition of the
basis. We performed such a check, repeating a calculation
described above with enlarged basis set. More specifically,
we added more basis functions of the 1De-symmetry.
For this calculation the n = 0, n = ±2 blocks contained
1De basis functions with Nmax = 10. Correspondingly,
the total number of the basis functions of 1De symmetry
becomes 134 in each block with even n (comparing to 57
for the calculation with Nmax = 8 reported in Tab. 5).
Overall dimension of the eigenvalue problem (5) becomes
2838. This calculation produces the following results
for the resonance parameters of the ground state for
the photon frequency of 111 eV: E = −2.89525515 a.u.
(level position) and Γ/F 2 = 0.0147077 a.u. (level width)
for F = 0.5 a.u., and E = −2.86984886 a.u. and
Γ/F 2 = 0.014672 a.u. for F = 1.0 a.u. Comparison
of these numbers with the corresponding entries from
Table 5 shows that even for the field strengths as large
as F = 1.0 a.u. we seem to have achieved a convergence
with respect to the variation of the composition of the
basis. This circumstance may be a consequence of the
fact that a comparatively large frequency considered
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diminishes the effect of the EM field-atom interaction.
We emphasize, that this comparison should serve only as
a rough guide, no reliable error bounds for the high fields
(of the order of 1 a.u.) can be drawn from it.

4 Conclusion

We performed a calculation of the total photoionization
cross-sections from the ground state of helium. We em-
ployed a theoretical procedure based on the Floquet-
Fourier representation of the solutions of the TDSE de-
scribing the helium atom in the presence of the linearly
polarized monochromatic electromagnetic field. The re-
sulting set of Floquet equations was solved by means of
the CRM method supplemented by the Hylleraas basis
technique.

We would like to emphasize the accuracy of the present
results for the photoionization cross-sections which is on
the level of a fraction of a percent which, we believe, is the
most accurate present estimate for the total cross-sections.
The interest in obtaining such accurate data in photoion-
ization calculations is two-fold. From the pure theoretical
point of view, we tried to demonstrate, that the level of
accuracy approaching the standards of the bound state
calculations is attainable in the photoionization calcula-
tions. On a more practical side, helium is often used as
a standard in experiments on photoionization. Achieving
such an accuracy in describing the photoionization pro-
cess in helium provides, therefore, a set of accurate data,
which can be used in experiments performed with other
gases.

Although only few selected photon energies were re-
ported in the paper, far wider and denser energy grid was
covered by the present calculation. These results might
serve as an accurate database and find their use in various
astrophysics and atomic physics applications. The authors
shall gladly communicate these data on request.
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